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Students spend most of their time assenting to what other people assert
mathematically.  This does not imply that they have blindly accepted it;

indeed they may have worked hard in order to agree with it.  But agreement
is not the same as understanding.  If they are to make mathematical sense
themselves, then they need to be able to assert things for themselves.  They
need to use technical terms with facility to express their ideas.  In particular,
when students come to apply a theorem or technique, they often fail to check
that the conditions for applying it are satisfied.  We conjecture that this is
usually because they simply do not think of it, and this is because they are not
fluent in using appropriate terms, notations, properties, or do not  recognise
the role of such conditions.

Stimulated by some ideas of Zygfryd Dryszlag (1984), we have outlined a
wide range of questions and prompts which mathematicians use in their
thinking, and which could be used by teachers to invite students to think
mathematically (Watson & Mason, 1998).  In particular, we are interested in
the effect on students’ understanding of asking and expecting them to generate
their own examples.

Boundary Examples

One class of these prompts is the construction of boundary examples.  Askew
& Wiliam (1995) refer to only just and very nearly examples: an example is
just an example if any change in the example causes it to become a non-
example, and a nearly example needs but one further adjustment in order to
become an example.  Although initially attractive as an idea, it is often a moot
point as to when a non-example can be tweaked or wrenched into becoming
an example and vice versa.

We suggest that a mathematical concept does not always have clear
boundaries of meaning which ought, conventionally, to be elaborated in
definitions by certain conditions and statements of properties.  For instance,
it is well known that students tend to retain their intuitions about continuity,
limits such as .

.
9, elements of sets such as groups as objects not operations, etc.,

despite being introduced to, and even appearing to handle competently,
formal definitions.  Indeed Fischbein (1987) believed that intuition is never
displaced, merely overlaid.  Even if one does not entirely agree with him, the
fact remains that students’ sense of, or concept image for a technical term is
often an interwoven mixture of details from formal definitions and intuitions.
Nevertheless, the idea that there are ‘edges’ to mathematical ideas which are
worth exploring is a powerful one.

We prefer to use the notion of boundary (classes of) example.  Boundary
examples distinguish between having and not having a specified property.
If students are only offered well-behaved examples, or examples which have
additional, but irrelevant, features, then the reason for careful statements of
conditions to a theorem or definition might pass them by and they may  well
develop the idea that it is possible to have ambiguous or undecided cases.  If,
for instance, students have only experienced monotonically increasing or
decreasing sequences, they may logically believe that no sequence can attain
its limit.  If they have also encountered sequences such as  {1, 1, 1, 1, …}, and
appreciated the generic nature of such an example, they may be more aware
of the infinitely many ways a sequence might incorporate a constant
subsequence, or might take its ‘limiting value’ in the sequence.  With such
experience, students  are less likely to focus on the irrelevant feature of



10

Getting Students to Create Boundary Examples John Mason & Anne Watson

increase or decrease.  Note that we are not talking about
specially constructed pathological examples here, but
a class of rather ordinary examples which may extend
the boundaries of the students’ understanding.  How
can students be helped to appreciate the importance of
such examples?  How can they be helped to focus
attention on relevant features?

We offer the following conjecture:

If you cannot construct boundary examples for a
theorem or a technique, then you do not fully
appreciate or understand it.

We are not claiming that construction of examples
constitutes understanding, just that it makes a very
useful contribution to achieving familiarity and
competence.  Students can be prompted to make
deeper sense of theorems and techniques if they
themselves have constructed examples and non-
examples.

Constructing examples which meet constraints

A common approach to counter-examples is to provide
students with examples, viz. :

• Draw a sketch of a continuous real-valued
function with domain [0, 1] and co-domain [0,1]
which is not differentiable at a point in the interior
of that interval.

• Write down a polynomial which passes through
the points (1, 1), (2, 3), and (3, 5).

• Write down an infinite sequence which diverges
even more slowly than {1/n}.

These are standard objects which are offered to students
in courses.  The trouble is that they are usually provided
by the teacher not the students, so many students do not
spend time working on the example to see why it has the
claimed properties, nor for what conjectures, and why,
it provides a counter-example.  Each is both an
opportunity to get the students to construct examples
themselves, and an opportunity to generalise:

• Which subsets of the reals can be the set of points
at which a function is not differentiable? Build up
a class of such functions which show the
possibilities.

• Find a general method for writing down the most
general polynomials which pass through a finite
set of specified points, such as (1, 2), (3, 5), (5, 8),
(8, 13), … . Build up a general procedure for
answering such questions.

• Build up a collection of different ways to modify a
sequence so that it converges or diverges more
quickly (more slowly) than a given sequence.

Here there are two important features: students
constructing their own examples, so that they have to
check conditions and at the same time develop fluency,
and students contemplating the general class of such
examples.  The next section offers a particularly good
way to promote this.

Boundary Examples

A powerful version of example construction arises
when constraints can be meaningfully compounded, so
that examples are required which meet all but one of the
constraints.  We find it sufficient to accumulate the
constraints in order, and then to work backwards to find
boundary examples.  Viz.  :

• Draw a sketch of a real-valued function with
domain [0, 1], and co-domain [0,1];

• Draw a sketch of a real-valued function with
domain [0, 1], and co-domain [0,1] which is also
continuous;

• Draw a sketch of a real-valued function with
domain [0, 1], and co-domain [0,1] which is also
continuous and which also has a maximum on [0,
1] at one end-point;

• Draw a sketch of a real-valued function with
domain [0, 1], and co-domain [0,1] which is also
continuous;, which has a maximum on [0, 1] at
one end-point and which has a minimum on [0, 1]
at one end-point;

• Draw a sketch of a real-valued function with
domain [0, 1], and co-domain [0,1] which is also
continuous, which has a maximum on [0, 1] at
one end-point, which has a minimum on [0, 1] at
one end-point, and which has a local maximum
and a local minimum in the interior.

Now comes the interesting part.  Work your way back
up the list, making sure that at each stage your example
does not satisfy the next (more demanding) condition.
Thus your first example must be a discontinuous function,
your last but one will have the extrema at the endpoints
but will not have local maxima or minima in the
interior.

Comment

One of the effects of an exercise like this is that students
become aware that they (and their teachers) often use
an overly particular ‘generic example’ when they hear
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some term used.   ‘Example’ can be interpreted to mean
‘a special example’ or ‘an obvious example’.  Indeed,
one variant is to ask students at each stage to construct
a particular example, then a peculiar example (eg.  one
which no-one else in the class is likely to think of), and
then (if appropriate) a general, or at least maximally
general example.  The effect of seeking a ‘peculiar’
example is to open up for consideration the range of
possibilities, the scope of generality (Bills 1996).

By constructing a boundary example students are forced
to extend their example-space in order to complete the
task.  So one effect is that students become more aware
of the range of possibilities from which they are choosing
when they select an example, and this is a precursor to
expressing generality.

Other Examples

• Write down a group of order 8; which is also
Abelian; which is the direct product of two non-
trivial subgroups; which has an element of order 4.
Working backwards up the list, the first challenge
is to find a group of order 8 which is a direct
product but with no element of order 4, while the
last is to write down a group not of order 8.

• Write down a sequence of positive reals; which
converges to 2; which takes on the value 2
infinitely often; for which infinitely many values
are not 2; for which for any positive integer n
there is a term beyond the nth which is greater than
1/n.

• Write down a linear transformation R3->R3; which
is singular; which has (0, 0, 1) in the kernel; which
also sends (1,0,0) –> (1, 0,0); which also has
(0,1,0) has an eigenvector; with eigenvalue 3.

Again most of the force of the work comes when
working back up the list seeking boundary examples.

Comments

Of course it would be possible to discuss and describe
the most general object possible at each stage.  It would
also be desirable sometimes to introduce constraints
which are impossible to fulfil.  In the case of the function
sketching, discussion of exactly what ‘local maximum’
means is likely to occur (do you accept a function which
is constant at the maximum value near the endpoint as
having a local maximum?).  Provoking students to
discuss extreme or special cases such as empty
intersections and unions, circles of zero or infinite
radius, triangles with an angle of 0, etc.  contributes to
their sense of the range of possibilities covered by the
conditions.

Final Comments

Using a sequence of increasing constraints has the
added virtue that it displays mathematical objects as the
result of freedom (to choose any example in a wide
range of possibilities) within constraints.  For example,
solving linear equations is really seeking the points
which started as being general or free, but then have to
satisfy a number of constraints; finding a method for
making a geometrical construction can similarly be
seen as starting with initial freedom or generality, and
then adding constraints.

We have found that many students do not appreciate
the range or scope of choice of objects which are
permitted by a theorem.  Most theorems can be seen as
a description of something which is invariant-amidst-
change, and the theorem states the scope and range of
change that are permitted.  But if students have not tried
to construct examples for themselves, have not probed
the role of various conditions in making a theorem or
technique work, then they are unlikely to use it
appropriately, and probably unlikely to think of using it
at all!

Finally, there is the ubiquitous concern about time.  The
first time you ask students to construct an example for
themselves, most will probably not succeed, at least
without a fair amount of time.  How then can the
material be ‘covered’?  Our answer is that over a period
of time working on getting students to construct
examples, they will become much better at it, and in the
process, much more proficient in the mathematics.
Consequently they will begin to learn more efficiently,
so that the pace of the course can accelerate (but neither
constantly positive nor uniformly!).  In effect, we cannot
afford not to invest the time needed in order to enable
students to appreciate the ideas to which they are being
exposed.
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